BOB Gateway Security Review

Pashov Audit Group

Conducted by: ast3ros, 0x37, sashik-eth, Parth, 11ill, Madalad
March 17th 2025 - March 20th 2025

Contents

1. About Pashov Audit Group
2. Disclaimer

3. Introduction

4. About BOB Gateway

5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings

[M-01] Tokens sent to old cached receiver address in
OfframpRegistry

8.2. Low Findings

[L-01] Offramp providers can receive ERC20 tokens
without sending BTC

[L-02] Offramp cannot submit BTC transactions if
submitters inactive

[L-03] createOrder() could have the deadline parameter
[L-04] txProofDifficultyFactor should have upper limit

[L-05] Off ramp owners might not retrieve assets from
BOB Gateway

[L-06] LP cannot prevent emergency offramp fund
withdrawals

[L-07] Implementing renounceOwnership() is dangerous

N N O B2 DD W W W NDNDN

~

o

10

10
10

11

12

13

1. About Pashov Audit Group

Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer

A smart contract security review can never verify the complete absence of

vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.

Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction

A time-boxed security review of the bob-collective/bob-gateway repository was
done by Pashov Audit Group, with a focus on the security aspects of the
application's smart contracts implementation.

https://github.com/pashov/audits
https://twitter.com/pashovkrum

4. About BOB Gateway

BOB is a hybrid Layer-2 powered by Bitcoin and Ethereum. The design is such that
Bitcoin users can easily onboard to the BOB L2 without previously holding any
Ethereum assets. The user coordinates with the trusted relayer to reserve some of
the available liquidity, sends BTC on the Bitcoin mainnet and then the relayer can
provide a merkle proof to execute a swap on BOB for an ERC20 token.

BOB Gateway is a bridge solution that enables Bitcoin users to seamlessly onboard
to the BOB L2 by swapping BTC for Ethereum-based assets (like wBTC or tBTC)
via a trusted relayer and smart contracts, without requiring pre-existing ETH
holdings.

5. Risk Classification

Severity Impact: High | Impact: Medium | Impact: Low
Likelihood: High Critical High Medium
Likelihood: Medium | High Medium Low
Likelihood: Low Medium Low Low

5.1. Impact

e High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.

e Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.

e Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

5.2. Likelihood

e High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.

e Medium - only a conditionally incentivized attack vector, but still relatively
likely.

e Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)

High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary

review commit hash - b6686882f1bb5ea7837c7a38b2b5a0e93755d55b

fixes review commit hash - 3¢6f4571933593e07423ea310a7ae7edf0393bfb

Scope

The following smart contracts were in scope of the audit:

® |CommonStructs

® OfframpRegistry

https://github.com/bob-collective/bob-gateway/tree/b6686882f1bb5ea7837c7a38b2b5a0e93755d55b
https://github.com/bob-collective/bob-gateway/tree/5e6f4571933593e07423ea310a7ae7edf0393bfb

7. Executive Summary

Over the course of the security review, ast3ros, 0x37, sashik-eth, Parth, 1lill,
Madalad engaged with BOB to review BOB Gateway. In this period of time a total
of 8 issues were uncovered.

Protocol Summary

Protocol Name | BOB Gateway

Repository https://github.com/bob-collective/bob-gateway

Date March 17th 2025 - March 20th 2025

Protocol Type | Hybrid Bitcoin Layer 2

Findings Count
Severity Amount
Medium 1
Low 7
Total Findings | 8

Summary of Findings

ID Title Severity | Status
Tokens sent to old cached receiver :
[M-01] address in OfframpRegistry Medium | Resolved
Offramp providers can receive
[L-O1] ERC20 tokens without sending BTC Low Resolved
[L-02] Offramp canpot SUbI.mt BTC : Low Acknowledged
— transactions if submitters inactive
(L.03] createOrder() could have the deadline Low Resolved
B parameter
(L.04] txProof‘Dl'fﬁcultyFactor should have Low Resolved
- upper limit
Off ramp owners might not retrieve
L-051 assets from BOB Gateway Low Acknowledged
LP cannot prevent emergency
[L-06] offramp fund withdrawals Low Resolved
(L07] Implementing renounceOwnership() Low Resolved

is dangerous

8. Findings

8.1. Medium Findings

[M-Ol] Tokens sent to old cached receiver
address In Of frampRegistry

Severity

Impact: Medium

Likelihood: Medium

Description

In the offrampregistry contract, when an offramp owner accepts an order, the
current receiver address is cached in the order details:

function offrampAcceptOrder(uint256 orderId) external {

offrampOrder.receiver = offrampDetails.receiver; // update receiver so
// even 1if offramp gets deregister current valid orders are process

This is done to ensure orders can still be processed even if the offramp is
deregistered. However, this creates a vulnerability when the receiver address is
updated before pending orders are processed.

When an offramp owner updates their receiver address via updateofframp .
The new receiver address is stored in the offramp details, but it does not update
the receiver address in any previously accepted orders.

function updateOfframp
(address token, address newReceiver, uint256 newMinFeeAmount) external {

offrampDetails.receiver = newReceiver;

Later, when the BTC transfer is verified and funds are released:

function verifyAndReleaseBtcTransfer
(OfframpProveBtcTransferArgs calldata proveBtcTransferArgs) external ({

IERC20 (offrampOrder.token).safeTransfer
(offrampOrder.receiver, amountToUnlock);

The tokens are transferred to the cached receiver address
(offramporder.receiver) rather than the updated address in the offramp

details.

If a receiver address needs to be updated due to security concerns (e.g., private
key compromise) or operational changes, any previously accepted orders will
still send tokens to the old, potentially compromised address. This prevents the
offramp owner from updating their receiving address for in-flight transactions,
which could result in token loss.

Recommendations

In verifyAndReleaseBtcTransfer|, USC the current receiver if available,
otherwise fall back to cached receiver.

function verifyAndReleaseBtcTransfer
(OfframpProveBtcTransferArgs calldata proveBtcTransferArgs) external {

if (offramps[offrampOwner][offrampOrder.token].receiver != address(0)) {
receiver = offramps[offrampOwner][offrampOrder.token].receiver;
} else {

receiver = offrampOrder.receiver;

+ o+ + + o+

}

- IERC20 (offrampOrder.token).safeTransfer
(offrampOrder.receiver, amountToUnlock);
IERC20 (offrampOrder.token).safeTransfer(receiver, amountToUnlock);
emit OrderProcessed (
proveBtcTransferArgs.orderId,
amountToUnlock,
resultInfo.value,
offrampOrder.token

)i

8.2. Low Findings

[L-01] Offramp providers can receive
ERC20 tokens without sending BTC

The verifyandreleaseBtcTransfer function in the OfframpRegistry contract

has an issue in how it verifies Bitcoin transactions. It only validates two
criteria:

o The Bitcoin transaction's output script matches the user's specified Bitcoin
address (outputScript)
o The transaction value meets or exceeds the minimum required amount

(amountLocked - feesMax)

However, the contract fails to verify that the transaction was specifically made
to fulfill this particular offramp order. This creates a vulnerability where
offramp providers can exploit existing unrelated Bitcoin transactions to claim
ERC20 tokens without sending BTC specifically for the order.

An offramp provider can:

o Accept a user's order through offrampacceptorder
o Instead of sending new BTC to fulfill the order, it submits an existing
Bitcoin transaction —perhaps one made earlier for a completely different
reason (e.g., a business payment or refund)—as long as it:
= Sends BTC to the same user address (outputscript).
= Has a value greater than or equal to amountLocked - feesMax .

o Receive the user's locked ERC20 tokens without actually sending BTC
specifically for this order

This allows for double claiming (using the same BTC transaction to fulfill
multiple orders).

It's recommended for offramp providers to send UTXO to a specific address
that the relayer control (commits to offramp) and that address will forward
BTC to users.

[L-02] Offramp cannot submit BTC
transactions if submitters inactive

The verifyandreleasentcTransfer function has an access control check that
allows only authorized actors (submitters) to verify BTC tx on the EVM side.
This puts offramp actors into dependent on submitters, so if submitters are
inactive or if the owner is compromised and deauthorized all submitters - the
offramp cannot finalize BTC tx. At the same time, users could refund their
orders on the EVM side so the offramp would face losses.

Consider adding an "emergency verify" function that would allow offramp to
verify BTC tx only for their orders in case of time is close to the cratm peray

timestamp. This way offramp could be sure that their trade would be
successfully finished and the user would not be able to refund the order while
BTC had already transferred.

[L-03] createOrder() could have the
deadline parameter

The createorder doesn't have a deadline parameter. Such a feature could be

useful for users in case their creation order transaction is stuck in the mempool
or they forgot about creating order.

Consider adding an optional deadline parameter to the offramporderargs
struct and check against its value during the offrampacceptorder call.

[L-04] txProofDifficultyFactor should have
upper limit

The setTxproofpifficultyractor function has a minimal limit check for the
New txProofDifficultyFactor , however, it is missing the upper limit check.

This could lead to a scenario when the owner accidentally/maliciously sets
txProofDifficultyFactor to some big value that would prevent BTC

transaction verifying calls and would allow users to unlock their funds on the
EVM side, while on the BTC side they would receive assets as well.

10

Consider setting the upper limit check for txproofpifficultyractor to some
reasonable value (less than crarm perav in terms of BTC block time).

[L-05] Off ramp owners might not retrieve
assets from Boe cateway

Based on the Bob's
documentation(https://docs.gobob.xyz/learn/introduction/roadmap/), " BOB is a
Hybrid L2 (Layer 2), a new kind of rollup that inherits Bitcoin security while
providing trust-minimized bridges directly to multiple L1s.

Today, BOB has completed Phase 1 of its roadmap. The network is live as an
optimistic roll up on Ethereum with a growing TVL of Bitcoin liquid staking
tokens (LSTs) in our DeFi ecosystem. Our onchain BTC light client powers
trust-minimized cross-chain BTC intents with BOB Gateway.

In current phase, Bob blockchain is one roll up L2 on Ethereum. Like
OP/ARB, re-org may happen in this Bob blockchain based on current phase’s
solution.

If re-org happens, malicious users may monitor this event and try to insert one
create order transaction. This may cause the off ramp owner may accept and
process one wrong off ramp order.

For example:

1. Alice creates one order for 1 WBTC, the order id is 1.

2. The off ramp owner Bob monitors this order, and accepts this order.

3. Bob sends the related transfer transaction to Bitcoin blockchain and add this
BTC transaction via api addBtcTxForOrder/

4. If re-org happens, Alice can insert one order for 1 wei WBTC, the order is id
1.

5. Alice's previous transaction may fail if there is not enough balance in Alice's
account.

6. For bob's evm transaction, we still match the order id 1.

7. Based on the case, Alice will get 0.99 BTC in the BTC blockchain, but Bob
will lose BTC and can not get the expected WBTC.

Recommendations:

11

When we identify one off ramp order, we need to use one hash related with all
parameters in this order. When off ramp owners accept one order, we will input
the related order's hash value.

[L-06] LP cannot prevent emergency
offramp fund withdrawals

The offrampacceptorder function lacks the whennotraused modifier, creating
a vulnerability:

function offrampAcceptOrder(uint256 orderId) external {

}

When the system is paused (likely during an emergency), users should be able
to withdraw their locked funds using the unlockrunds function. However, the
current implementation allows a malicious or compromised LP to accept
orders even during a system pause.

When an order moves from Active to Accepted state, it triggers the
cratu pEray of 7 days before the user can withdraw:

if (offrampOrder.status == OfframpOrderStatus.Accepted) {
require (
offrampOrder.timestamp + CLAIM DELAY < block.timestamp,
"Funds are still locked and cannot be claimed yet"

This creates a scenario where:

o The system is paused due to an emergency

o Users attempt to withdraw funds via unlockrunds

o A compromised LP rapidly accepts all pending orders

o Users are forced to wait 7 days (per cratu peray) before they can withdraw

o This effectively denies the oppornity to withdraw assets from system. It can
lead to loss of fund.

Add the whennotraused modifier to the offrampAcceptOrder function:

12

- function offrampAcceptOrder (uint256 orderId) external {
+ function offrampAcceptOrder (uint256 orderId) external whenNotPaused {

[L-07] Implementing renounceoOwnership() IS
dangerous

OfframpRegistry.sol Inherits ownable2step , and renouncing ownership via
renounceOwnership() 18 possible since the function is not overridden. Leaving

the contract without an owner would prevent offramps from being
added/removed, as well as submitters from being authorized/deauthorized,
which can lead to numerous undesirable outcomes:

o Malicious/Compromised offramp can grief users by accepting every order
without the intention of processing it by sending BTC, locking user funds for
7 days whenever they create an order

o If the relay contract responsible for calling verifyandreleaseBtcTransfer()
becomes compromised or experiences a bug leading to downtime, the
contract would be bricked since it would no longer be possible to
deauthorize the faulty contract and reauthorize a new one

o OfframpRegistry.sol also inherits rausable , meaning that it is possible to
renounce ownership while the contract is paused, which would make
createOrder () permanently uncallable, bricking the contract

Consider overriding renounceownership() to revert when called by placing
the following code in offrampregistry.sol :

function renounceOwnership() public override onlyOwner {
revert("renouncing ownership not allowed");

}

13

